
Inner Sphere Trees
for Proximity and Penetration Queries

Rene Weller
Clausthal University, Germany

Email: rwe@tu-clausthal.de

Gabriel Zachmann
Clausthal University, Germany
Email: zach@tu-clausthal.de

Abstract— We present a novel geometric data structure for
approximate collision detection at haptic rates between rigid
objects. Our data structure, which we call inner sphere trees,
supports different kinds of queries, namely, proximity queries
and a new method for interpenetration computation, the pen-
etration volume, which is related to the water displacement of
the overlapping region and, thus, corresponds to a physically
motivated force.

The main idea is to bound objects from the inside with a
set of non-overlapping spheres. Based on such sphere packings, a
“inner bounding volume hierarchy” can be constructed. In order
to do so, we propose to use an AI clustering algorithm, which
we extend and adapt here.

The results show performance at haptic rates both for prox-
imity and penetration volume queries for models consisting of
hundreds of thousands of polygons.

I. INTRODUCTION

Collision detection between rigid objects is important for
many fields of robotics and computer graphics, e.g. for path-
planning, haptic rendering, physically-based simulations, and
medical applications. Today, there exist a wide variety of freely
available collision detection libraries and nearly all of them
are able to work at visual interactive rates, even for very
complex objects [TWZ07]. Most collision detection algorithms
dealing with rigid objects use some kind of bounding volume
hierarchy (BVH). The main idea behind a BVH is to subdivide
the primitives of an object hierarchically until there are only
single primitives left at the leaves. BVHs guarantee very fast
responses at query time, so long as no further information
than the set of colliding polygons is required for the collision
response. However, most applications require much more
information in order to resolve or avoid the collisions.

One way to do this is to compute the exact time of contact of
the objects. This method is called continuous collision detec-
tion. Another approach, called penalty methods, is to compute
repelling forces based on the penetration depth. However, there
is no universally accepted definition of the penetration depth
between a pair of polygonal models [ZKVM07], [OG96].
Mostly, the minimum translation vector to separate the objects
is used, but this may lead to discontinuous forces.

Another approach is to avoid penetrations or contacts before
they really happen. In this case, the minimum distance between
the objects can be used to compute repelling forces.

Haptic rendering requires update rates of at least 200 Hz,
but preferably 1 kHz to guarantee a stable force feedback.

Consequently, the collision detection time should never exceed
5 msec.

One example of an approach that offers fairly constant query
times are voxel-based methods like the Voxmap Pointshell
algorithm (VPS), where objects, in general, have to be vox-
elized (the “voxmap”) and covered by a point cloud (the “point
shell”). This can be very memory consuming and produce
aliasing artifacts due to the discretization errors.

A. Main Contributions

This paper contributes the following novel ideas to the area
of collision detection:

• a novel geometric data structure, the Inner Sphere Trees
(IST), that provides hierarchical bounding volumes from
the inside of an object;

• a method to compute a dense sphere packing inside a
polygonal object;

• we propose to utilize a clustering algorithm to construct
a sphere hierarchy;

• a unified algorithm that can compute for a pair of ob-
jects, based on their ISTs, both an approximate minimal
distance and the approximate penetration volume; the
application does not need to know in advance which
situation currently exists between the pair of objects;

Our ISTs and, consequently, the collision detection algorithm
are independent of the geometry complexity; they only depend
on the approximation error.

The main idea is that we do not build an (outer) hierarchy
based on the polygons on the boundary of an object. Instead,
we fill the interior of the model with a set of non-overlapping
simple volumes that approximate the object’s volume closely.
In our implementation, we used spheres for the sake of
simplicity, but the idea of using inner BVs for lower bounds
instead of outer BVs for upper bounds can be extended
analogously to all kinds of volumes. On top of these inner
BVs, we build a hierarchy that allows for fast computation of
the approximate proximity and penetration volume.

The penetration volume corresponds to the water displace-
ment of the overlapping parts of the objects and, thus, leads
to a physically motivated and continuous repulsion force.
According to [FL01, Sec. 5.1], it is “the most complicated yet
accurate method” to define the extent of intersection, which
was also reported earlier by [OH99, Sec. 3.3]. However, to our

Fig. 1. These images show the different stages of our sphere packing algorithm. First, we voxelize the object (left) and compute distances from the voxels
to the closest triangle (second image; transparency = distance). Then, we pick the voxel with the largest distance and put a sphere at its center. We proceed
incrementally and, eventually, we obtain a dense sphere packing of the object (right).

knowledge, there are no algorithms to compute it efficiently
as yet.

Our data structure can support all kinds of object represen-
tations, e.g. polygon meshes or NURBS surfaces. The only
precondition is that they be watertight. In order to build the
hierarchy on the inner spheres, we utilize a recently proposed
clustering algorithm that allows us to work in an adaptive
manner.

The results shows that our new data structure can answer
both kinds of queries at haptic rates with a negligible loss of
accuracy.

II. PREVIOUS WORK

Collision detection has been extensively investigated by
researchers in the past decades. There already exist a large
variety of techniques and software packages for collision de-
tection queries. They vary greatly in their techniques and com-
putational method. Here we concentrate on those approaches,
that are able to compute extended contact informations like a
penetration depth or the separation distance between a pair of
objects.

Most of them are not designed to work at haptic refresh
rates, or they are restricted to simple point probes, or require
special objects, such as convex objects as input. In the follow-
ing, we will give a short overview of classical and also state
of the art approaches to manage these tasks.

A. BVH based methods

A classical approach for proximity queries is the GJK
algorithm [GJK88], [vdB99]. It derives the distance between
a pair of convex objects, by utilizing the Minkowski sum.
It is also possible to extend GJK in order to compute the
penetration depth [Cam97].

In [JC98] a generalized framework for minimum distance
computations that depends on geometric reasoning is pre-
sented. It also includes time-critical properties.

PQP [LGLM99] creates a hierarchy of rectangle swept
spheres. Distance computations are performed between these
volumes on the hierarchical tree. Moreover, it uses specialized
algorithms to improve the efficiency of distance calculations.
We used it in this paper to compute the ground truth for the
proximity queries.

Another package, supporting proximity queries between
any convex quadrics is SOLID [vdB01]. It uses axis aligned

bounding boxes and the Minkowski difference between convex
polytopes together with several optimization techniques.

SWIFT++ [EL01] provides a convex surface decomposition
scheme and a modified Lin-Canny closest feature algorithm
to compute approximate as well as exact distance between
general rigid polyhedra.

Sphere trees have also been used for distance computation in
the past [Qui94], [Hub95], [MO06]. The algorithms presented
there are interruptible and they are able to deliver approxi-
mative distances. Moreover, they all compute a lower bound
on the distance, because of using outer hierarchies, while our
ISTs derive an upper bound. Thus, a combination of these
approaches with our ISTs could deliver good error bounds in
both directions.

[ZKVM07] presented an extended definition of the pen-
etration depth that also takes the rotational component into
account, called the generalized penetration depth. However,
this approach is computationally very expensive and, thus,
might currently not be fast enough for haptic interaction rates.

[RL06] approximate a local penetration depth by first
computing a local penetration direction and then use this
information to estimate a local penetration depth on the GPU.

The literature on penetration volume computation is sparse.
One approach, proposed by [HS04], constructs the intersection
volume of convex polyhedra explicitly. For this reason, it is
applicable only to very simple geometries at interactive rates.

Another interesting method is given by [FBAF08]. They
compute an approximation of the intersection volume from
layered depth images on the GPU. This approach is appli-
cable to deformable geometries but restricted to image space
precision.

B. Voxel based data structures
Classical Voxmap Pointshell approaches [MPT99] divide

the environment into a dynamic object, that can move freely
through space and static objects that are fixed in the world.
The static world is discretized into a set of discrete volume
elements, the voxels, while the dynamic object is described
by a set of points that represent its surface, the pointshell. At
query time, for each of these points in the pointshell, it is
determined with a simple boolean test, whether it is located
in a filled voxel or not.

There also exist extensions to VPS, including optimiza-
tions to the force calculation in order to increase its sta-
bility [RPP∗01]. However, even such optimizations cannot

Fig. 2. This figure shows the first steps of the creation of the inner spheres. First, the object is voxelized (left). Then, we compute the shortest distance
to the surface (red lines) for interior voxel centers (yellow), i.e., a discretization of the interior distance field. Next, we place a maximal sphere at the voxel
center with the largest radius (green sphere). Then, the red colored voxels are deleted, and the shortest distances of some voxels are updated, because they
are closer now to an inner sphere (blue). This procedure continues greedily as shown in the drawing to the right.

completely remedy the limits of VPS, namely aliasing effects
and the high memory consumption.

Closely related to voxel-based approaches are distance field
based methods. [BJ08] use a pointshell of reduced deformable
models in combination with distance fields in order to guar-
antee continuous contact forces.

III. CREATION OF THE INNER SPHERE TREE

In this section we describe the construction of our data
structure. In a fist step, we want a watertight object to be
densely filled with a set of non-overlapping spheres. The
volume of the object should be approximated well by the
spheres, while their number should be small. In a second step,
we create a hierarchy over this set of spheres.

For squared objects, spheres seem not to be a good choice as
filling volumes. However, they compensate this disadvantage
because of the trivial overlap test and their rotationally invari-
ance. Moreover, it is easy, in contrast to AABBs or OBBs, to
compute the exact intersection volume.

A. The Sphere Packing
Filling objects densely with smaller volumes is a highly

non-trivial task and still an active field of research, even when
restricted to spheres [BS08], [Sch06]. We present a simple
heuristic that offers a good trade-off between accuracy and
speed in practice.

This heuristic is currently based on a distance field. We
start with a flood filling voxelization, but instead of simply
storing whether or not a voxel is filled, we additionally store
the distance d from the center of the voxel to the nearest
point on the surface, together with the triangle that realizes
this distance.

After this initialization, we use a greedy algorithm to
generate the inner spheres. All voxels are stored in a priority
queue, sorted by their distance to the surface. Until the p-queue
is empty, we extract the maximum element, i.e. the voxel V ∗

with the largest distance d∗. We create an inner sphere with
radius d∗ and centered on the center of the voxel V ∗. Then, all
voxels whose centers are contained in this sphere are deleted
from the p-queue. Additionally, we have to update all voxels
Vi with di < d∗ and distance d(Vi, V ∗) < 2d∗. This is because
they are now closer to the sphere around V ∗ than to a triangle
on the hull (see Figure 2). Their di must now be set to the
new free radius.

After this procedure, the object is filled densely with a set of
non-overlapping spheres. The density, and thus the accuracy,
can be controlled by the number of voxels.

B. Building the IST

Our sphere hierarchy is based on the notion of a wrapped
hierarchy [AGN∗04], where inner nodes are tight BVs for all
their leaves, but they do not necessarily bound their direct
children. Compared to layered hierarchies, the big advantage
is that the inner BVs are tighter. We use a top-down approach
to create our hierarchy, i.e., we start at the root node that
covers all inner spheres and divide these into several subsets.

The partitioning of the inner spheres has significant influ-
ence on the performance during runtime. Previous algorithms
for building ordinary sphere trees, like the medial axis ap-
proach [BO04], [Hub95] work well if the spheres constitute a
covering of the object and have similar size, but in our scenario
we use disjoint inner spheres that exhibit a large variation in
size. Other approaches based on the k-center problem work
only for sets of points and do not support spheres.

So, we decided to use the batch neural gas clustering algo-
rithm (BNG) known from artificial intelligence [CHHV06].
BNG is a very robust clustering algorithm, which can be
formulated as stochastic gradient descent with a cost function
closely connected to quantization error. Like k-means, the cost
function minimizes the mean squared euclidean distance of
each data point to its nearest center. But unlike k-means,
BNG exhibits very robust behavior with respect to the initial
cluster center positions (the prototypes): they can be chosen
arbitrarily without affecting the convergence. Moreover, BNG
can be extended to allow the specification of the importance
of each data point; below, we will describe how this can be
used to increase the quality of the ISTs.

In the following, we will give a quick recap of the basic
batch neural gas and then describe our extensions and appli-
cation to building the inner sphere tree.

Given points xj ∈ Rd, j = 0, . . . ,m and prototypes wi ∈
Rd, i = 0, . . . , n initialized randomly, we set the rank for every
prototype wi with respect to every data point xj as

kij := |{wk : d(xj , wk) < d(xj , wi)}| ∈ {0, . . . , n} (1)

In other words, we sort the prototypes with respect to every
data point. After the computation of the ranks, we compute

Fig. 3. This figure shows the results of our hierarchy building algorithm based on batch neural gas clustering with magnification control. All of those inner
spheres that share the same color are assigned to the same bounding sphere. The left image shows the clustering result of the root sphere, the right images
the partitioning of its four children.

the new positions for the prototypes:

wi :=

∑m
j=0 hλ(kij)xj∑m
j=0 hλ(kij)

(2)

These two steps are repeated until a stop criterion is met. In
the original paper, a fixed number of iterations is proposed.
We propose to use an adaptive version and stop the iteration if
the movement of the prototypes is smaller than some ε. In our
examples, we chose ε ≈ 10−5 × BoundingBoxSize, without
any differences in the hierarchy compared to the non-adaptive,
exhaustive approach. This improvement speeds up the creation
of the hierarchy significantly.

The convergence rate is controlled by a monotonically
decreasing function hλ(k) > 0 that decreases with the number
of iterations t. We use the function proposed in the original
paper: hλ(k) = e−

k
λ with initial value λ0 = n

2 , and reduction

λ(t) = λ0

(
0.01
λ0

) t
tmax , where tmax is the maximum number

of iterations. These values have been taken according to
[MBS93].

Obviously, the number of prototypes defines the arity of the
tree. Experiments with our data structure have shown that a
branching factor of 4 produces the best results. Additionally,
this has the benefit that we can use the full capacity of SIMD
units in modern CPUs.

So far, the BNG only utilizes the location of the centers
of the spheres. In our experience, this already produces much
better results than other, simpler heuristics, such as greedily
choosing the biggest spheres or the spheres with the largest
number of neighbors. However, it does not yet take the extent
of the spheres into account. As a consequence, the prototypes
tend to avoid regions that are covered with a very large sphere,
i.e., centers of big spheres are treated as outliers and they are
thus placed on very deep levels in the hierarchy. However, it
is better to place big spheres at higher levels of the hierarchy
in order to get early lower bounds during distance traversal

(see Section IV-A for details).
Therefore, we use an extended version of the classical

batch neural gas, that also takes the size of the spheres into
account. Our extension is based on an idea of [HHV06],
where magnification control is introduced. The idea is to add
weighting factors in order to “artificially” increase the density
of the space in some areas.

With weighting factors v(xj), Eq. 2 becomes

wi :=

∑m
j=0 hλ(kij)v(xj)xj∑m
j=0 hλ(kij)v(xj)

(3)

In our scenario, we already know the density, because our
spheres are disjoint. Thus, we can directly use the volumes of
our spheres to let v(xj) = 4

3πr
3.

Summing up the hierarchy creation algorithm: we first
compute a bounding sphere for all inner spheres (at the leaves),
which becomes the root node of the hierarchy. To do that, we
use the fast and stable smallest enclosing sphere algorithm
proposed in [Gär99]. Then, we divide the set of inner spheres
into subsets in order to create the children. To do that, we use
the extended version of batch neural gas with magnification
control. We repeat this scheme recursively (See Figure 3 for
some clustering results).

In the following, we will call the spheres in the hierarchy
that are not leaves hierarchy spheres. Spheres at the leaves,
which were created in Section III-A, will be called inner
spheres. Note that hierarchy spheres are not necessarily con-
tained completely within the object.

IV. BVH TRAVERSAL

Our new data structure supports different kinds of queries,
namely proximity queries, which report the separation distance
between a pair of objects, and penetration volume queries,
which report the common volume covered by both objects.
As a by-product, the proximity query can return a witness

Fig. 4. After constructing the sphere packing (see Section III-A), every
voxel can be intersected by several non-overlapping spheres (left). These do
not necessarily account for the whole voxel space (green space in the left
picture). In order to account for these voids, too, we simply increase the
radius of the sphere that covers the center of the voxel (right).

Algorithm 1: computeVolume(A, B, totalOverlap)
input : A, B = spheres in the inner sphere tree
in/out: totalOverlap = overall volume of intersection
if A and B are leaves then

// end of recursion
totalOverlap += overlapVolume(A, B)

else
// recursion step
forall children a[i] of A do

forall children b[j] of B do
if overlap(a[i],b[j]) > 0 then

checkVolume(a[i], b[j], totalOverlap)

realizing the distance, and the penetration algorithm can return
a partial list of intersecting polygons.

In this section, we concentrate on these two types of
queries, because they are more interesting for physically-based
simulations that need some contact information to compute
proper forces. But it should be obvious that the traversal can
be easily modified in order to provide also approximate yes-
no answer, which would further increase the speed of collision
detection.

We start with a separate discussion of the two query types
in order to point out their specific requirements. In Section IV-
C we describe how to combine these traversal schemes to a
unified algorithm that is able to provide distance and overlap
volume informations, without the user has to know in advance,
whether the objects overlap or not.

A. Proximity Queries

Our proximity query algorithm works like most other
classical BVH traversal algorithms: We check whether two
bounding volumes overlap or not. If this is the case, we
recursively step to their children. In order to compute lower
bounds for the distance, we simply have to add an appropriate
distance test at the right place. This has to be done, when we
reach a pair of inner spheres (i.e., leaves) during traversal. Due
to Section III-A, these inner spheres are located completely
inside the object and provide, thus, a lower bound on the
sought-after distance. During traversal, there is no need to
visit bounding volumes in the hierarchy that are farther away
than the current minimum distance, because of the bounding
property. This results in a high culling efficiency.

Fig. 5. The direction of the penalty force can be derived from the weighted
average of all vectors between the centers of colliding pairs of spheres,
weighted by their overlap.

It should be obvious, that this algorithm can be easily ex-
tended to triangle accuracy by additionally taking the triangles
into account that are closest to an inner sphere.

B. Penetration Volume Queries

As stated before, our data structure does not only support
proximity queries, but also a new kind of penetration query,
namely the penetration volume. This is the volume of the
intersection of the two objects, which can be interpreted
directly as the amount of the repulsion force, if it is considered
as the amount of water being displaced.

The algorithm to compute the penetration volume (see
Algorithm 1) does not differ very much from the proximity
query test: we simply have to replace the distance test by
an overlap test and maintain an accumulated overlap volume
during the traversal. The overlap volume of a pair of spheres
can be easily derived by adding the volumes of the spherical
caps.

Due to the non-overlapping constraint of the inner spheres,
the accumulated overlap volumes provides a lower bound on
the real overlap volume of the objects.

1) Filling the gaps: The algorithm described in Section III-
A results in densely filled objects. However, there still remain
small voids between the spheres that cannot be completely
compensated by increasing the number of voxels. This results
in bad lower bounds.

As a remedy, we propose a simple heuristic to compensate
this problem: We additionally assign a secondary radius to
each inner sphere, such that the volume of the secondary
sphere is equal to the volume of all voxels whose centers are
contained within the radius of the primary sphere (see Fig-
ure 4). This guarantees that the total volume of all secondary
spheres equals the volume of the object, within the accuracy
of the voxelization, because each voxel volume is accounted
for exactly once.

Certainly, these secondary spheres may slightly overlap,
but this simple heuristic leads to acceptable estimations of
the penetration volume. (Note, however, that the secondary
spheres are not necessarily larger than the primary spheres.)

2) Collision response: In order to apply penalty forces in
haptic environments or simulations, we also need the direction
of the force in addition to its amount.

Direction
Volume

Frame

Fo
rc

e
D

ir
ec

tio
n

/
de

g

Pe
ne

tr
at

io
n

Vo
lu

m
e

120

115

110

105

100

95

90

85

80
10008006004002000

250

200

150

100

50

0

Fig. 6. Penetration volume (red) and direction of the force vector (green)
during the path of a cow scraping alongside a pig.

This can be derived easily from our ISTs by considering
all overlapping pairs of spheres (Ri, Sj) separately. Let ci, cj
be their sphere centers and nij = ci − cj . Then, we compute
the overall direction of the penalty force as the weighted sum
n =

∑
i,j Vol(Ri ∩ Sj) · nij (see Figure 5). Obviously, this

direction is continuous, provided the path of the objects is
continuous (see Figure 6).

In case of deep penetrations, it can be necessary to flip some
of the directions nij . Computing normal cones for all spheres
throughout the hierarchy can help to identify these pairs. It
is also possible to extend this approach to provide continuous
torques. Details are omitted here due to space constraints.

C. The Unified Algorithm

In the previous sections, we introduced the proximity and
the penetration volume computation separately. However, it
is quite easy to combine both algorithms. This yields a
unified algorithm that can compute both the distance and
the penetration volume, without the user having to know in
advance, whether the objects overlap or not.

We start with the distance traversal. If we find the first pair
of intersecting inner spheres, then we simply switch to the
penetration volume computation.

The correctness is based on the fact, that all pairs of inner
spheres we visited so far during distance traversal do not
overlap and thus do not extend the penetration volume. Thus,
we do not have to visit them again and can continue with the
traversal of the rest of the hierarchies using the penetration
volume algorithm. If we do not meet an intersecting pair of
inner spheres, the unified algorithm still reports the minimal
separating distance.

V. RESULTS

We have implemented our new data structure in C++. The
testing environment consists of a PC running Windows XP
with an Intel Pentium IV 3GHz dual core CPU and 2GB
of memory. The initial distance field was computed using a
slightly modified version of Dan Morris’ Voxelizer [Mor06].

The benchmark includes hand recorded object paths with
distances ranging from about 0–20% of the object’s BV size
for the proximity queries. We concentrated on very close
configurations, because they are more interesting in real world
scenarios and more challenging regarding the running time.
The paths for the penetration volume queries concentrate on
light to medium penetrations of about 0–10% of the object’s
volume. This scenario resembles the usage in haptic appli-
cations best, because the motive for using collision detection
algorithms is to avoid heavy penetrations. However, we also
included some heavy penetrations of 50% of the object’s
volume to stress our algorithm.

We used highly detailed objects with a polygon count
ranging up to 370k to test the performance and the quality
of our algorithm.1 The quality of the resulting distances
and penetration volumes is closely related to the quality of
the underlying voxelization. Consequently, we voxelized each
object in different resolutions in order to evaluate the trade-off
between the number of spheres and the accuracy.

We computed the ground truth data for the proximity
queries with the PQP library. We also included the running
time of PQP in our plots, even if the comparison seems to
be somewhat unfair, because PQP computes exact distances.
However, it shows the impressive speed-up that is achievable
when using approximative approaches. Moreover, it is possible
to extend ISTs to support exact distance calculations, too.

To our knowledge, there are no implementations available
to compute the exact penetration volume efficiently. In order
to still evaluate the quality of our penetration volume approx-
imation, we used a tetrahedralization to compute the exact
volume. Even though we speed it up by a hierarchy built on
the tetrahedra, the running time of this approach is in the order
of 0.5 sec/frame.2

The results of our benchmarking show that our ISTs with
the highest sphere resolution have an average speed-up of 50
compared to PQP, while the average error is only 0.15%. Even
in the worst case, they are suitable for haptic rendering with
response rates of less than 2 mesc in the highest resolution
(see Figure 7).

Our penetration volume algorithm is able to answer queries
at haptic rates between 0.1 msec and 2.5 msec on average,
depending on the voxel resolution, even for very large objects
with hundreds of thousands of polygons (see Figure 8). The
average accuracy using the highest sphere resolution is around
0.5%.

The per-frame quality displayed in Figure 9 re-emphasizes
the accuracy of our approach and, additionally, shows the
continuity of the distance and the volume.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a novel hierarchical data structure,
the inner sphere trees. The ISTs support different kinds of

1 Please visit cg.in.tu-clausthal.de/research/ist to watch some videos of our
benchmarks.

2 This is due to bad BV tightness and the costly tetrahedron-tetrahedron overlap
volume calculation.

PQP (775 k)
IST (327 k)
IST (162 k)
IST (59 k)
IST (10 k)

Running Time (Avg Max)

m
se

c

m
se

c

7

6

5

4

3

2

1

0

1.8
1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0

IST (327 k)
IST (162 k)
IST (59 k)
IST (10 k)

Distance Error

E
rr

or
in

%

10
9
8
7
6
5
4
3
2
1
0

Fig. 7. Left: Snapshot from our oil pump scene (330k triangles). The red and blue spheres show the closest pair of spheres. Center: average and maximum
time/frame. Left: relative error compared to accurate distance.

TET (171 k)
IST (237 k)
IST (115 k)
IST (42 k)
IST (7 k)

Running Time (Avg Max)

m
se

c
14
12
10
8
6
4
2
0

4
3.5

3
2.5

2
1.5

1
0.5

0

IST (237 k)
IST (115 k)
IST (42 k)
IST (7 k)

Volume Error

E
rr

or
in

%

6

5

4

3

2

1

0

Fig. 8. Left: Snapshot from our bolt scene (171k triangles). The red and blue spheres show the overlapping inner spheres. Center: average and maximum
time/frame. Right: relative error compared to accurate penetration volume.

PQP (775 k)
IST (327 k)
IST (59 k)
IST (10 k)

Frame

D
is

ta
nc

e

10009008007006005004003002001000

0.25

0.2

0.15

0.1

0.05

0

TET (171 k)
IST (237 k)
IST (115 k)
IST (7 k)

Frame

Pe
ne

tr
at

io
n

Vo
lu

m
e

9008007006005004003002001000

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

Fig. 9. Left: Distance per frame in the oil pump scene. Right: Penetration volume per frame in the bolt scene.

collision detection queries, including proximity queries and
penetration volume computations with one unified algorithm.
All types of queries can be answered at rates of about 1 kHz
(which makes the algorithm suitable for haptic rendering) even
for very complex objects with several hundreds of thousands
of polygons.

For proximity situations, typical average running times are
in the order of 0.05 msec with 327 000 spheres per object and
an error of about 0.1%. In penetration situations, the running
times depend, obviously, much more on the intersection vol-
ume; here, we are in the order of around 2.5 msec on average
with 237 000 spheres and an error of about 0.5%.

The balance between accuracy and speed can be defined
by the user. Moreover, the speed is independent of the object
complexity, because the number of leaves of our hierarchy is
mostly independent of the number of polygons.

Our algorithm for both kinds of queries can be integrated
into existing simulation software very easily, because there is
only a single entry point, i.e., the application does not need to
know in advance whether or not a given pair of objects will
be penetrating each other.

Memory consumption of our inner sphere trees is similar to
other bounding volume hierarchies, depending on the prede-
fined accuracy (in our experiments, it was always in the order

of a few MB). This is very modest compared to voxel-based
approaches.

Another big advantage of our penetration volume algorithm,
when utilized for penalty-based simulations, is that it yields
continuous directions and magnitudes of the force and the
torque, even cases of deep penetrations.

Our novel approach opens up several avenues for future
work.

First of all, the intermediate distance field generation in
order to obtain a sphere packing should be replaced with
a better algorithm. This is probably a challenging problem,
because several goals must be met: accuracy, query efficiency,
and small build times.

An interesting question is the analytical determination of
exact error bounds. This could lead to an optimal number of
inner spheres with well-defined errors.

On the whole, ISTs are fast enough for haptic refresh rates.
However, there exist configurations, especially in cases of
heavy penetrations, where the 1 kHz constraint may not always
be met. Therefore it would be nice to apply time critical
techniques to the traversal algorithms in order to guarantee
fixed response times.

Finally, there might also be some room for improving the
hierarchy. For example, it could be better, especially at the
borders of an object, to minimize the volume of those parts
of hierarchy spheres that are outside of the object, instead of
minimizing their volume.

ACKNOWLEDGMENT

This work was partially supported by DFG grant ZA292/1-1
and BMBF grant Avilus / 01 IM 08 001 U.

REFERENCES

[AGN∗04] AGARWAL, GUIBAS, NGUYEN, RUSSEL, ZHANG: Collision
detection for deforming necklaces. CGTA: Computational Ge-
ometry: Theory and Applications 28 (2004).

[BJ08] BARBIČ J., JAMES D. L.: Six-dof haptic rendering of contact
between geometrically complex reduced deformable models.
IEEE Transactions on Haptics 1, 1 (2008), 39–52.

[BO04] BRADSHAW G., O’SULLIVAN C.: Adaptive medial-axis approx-
imation for sphere-tree construction. In ACM Transactions on
Graphics, vol. 23(1). ACM press, 2004, pp. 1–26.

[BS08] BIRGIN E. G., SOBRAL F. N. C.: Minimizing the object
dimensions in circle and sphere packing problems. Computers
& OR 35, 7 (2008), 2357–2375.

[Cam97] CAMERON S.: Enhancing GJK: Computing minimum and
penetration distances between convex polyhedra. In Proceedings
of International Conference on Robotics and Automation (1997),
pp. 3112–3117.

[CHHV06] COTTRELL M., HAMMER B., HASENFUSS A., VILLMANN T.:
Batch and median neural gas. Neural Networks 19 (jul 2006),
762–771.

[EL01] EHMANN S. A., LIN M. C.: Accurate and fast proximity queries
between polyhedra using convex surface decomposition. In in
Computer Graphics Forum (2001), pp. 500–510.

[FBAF08] FAURE F., BARBIER S., ALLARD J., FALIPOU F.: Image-based
collision detection and response between arbitrary volumetric ob-
jects. In ACM Siggraph/Eurographics Symposium on Computer
Animation, SCA 2008, July, 2008 (Dublin, Irlande, July 2008).

[FL01] FISHER S. M., LIN M. C.: Fast penetration depth estimation for
elastic bodies using deformed distance fields, 2001.

[Gär99] GÄRTNER B.: Fast and robust smallest enclosing balls. In ESA
(1999), Nesetril J., (Ed.), vol. 1643 of Lecture Notes in Computer
Science, Springer, pp. 325–338.

[GJK88] GILBERT E. G., JOHNSON D. W., KEERTHI S. S.: A fast
procedure for computing the distance between complex objects
in three-dimensional space. IEEE Journal of Robotics and
Automation 4 (1988), 193–203.

[HHV06] HAMMER B., HASENFUSS A., VILLMANN T.: Magnification
control for batch neural gas. In ESANN (2006), pp. 7–12.

[HS04] HASEGAWA S., SATO M.: Real-time rigid body simulation for
haptic interactions based on contact volume of polygonal objects.
Comput. Graph. Forum 23, 3 (2004), 529–538.

[Hub95] HUBBARD P. M.: Collision detection for interactive graphics
applications. IEEE Transactions on Visualization and Computer
Graphics 1, 3 (Sept. 1995), 218–230.

[JC98] JOHNSON D. E., COHEN E.: A framework for efficient minimum
distance computations. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA-98) (Piscataway,
May 16–20 1998), IEEE Computer Society, pp. 3678–3684.

[LGLM99] LARSEN E., GOTTSCHALK S., LIN M., MANOCHA D.: Fast
proximity queries with swept sphere volumes. In Technical
Report TR99-018 (1999).

[MBS93] MARTINETZ T. M., BERKOVICH S. G., SCHULTEN K. J.:
’Neural-gas’ network for vector quantization and its application
to time-series prediction. IEEE Trans. on Neural Networks 4, 4
(1993), 558–569.

[MO06] MENDOZA C., O’SULLIVAN C.: Interruptible collision detection
for deformable objects. Computers & Graphics 30, 3 (2006),
432–438.

[Mor06] MORRIS D.: Algorithms and data structures for haptic rendering:
Curve constraints, distance maps, and data logging. In Technical
Report 2006-06 (2006).

[MPT99] MCNEELY W. A., PUTERBAUGH K. D., TROY J. J.: Six
degrees-of-freedom haptic rendering using voxel sampling. In
Siggraph 1999 (Los Angeles, 1999), Rockwood A., (Ed.), Annual
Conference Series, ACM Siggraph, Addison Wesley Longman,
pp. 401–408.

[OG96] ONG C., GILBERT E.: Growth distances: New measures for
object separation and penetration. T-RA 12 (1996), 888–903.

[OH99] O’BRIEN J. F., HODGINS J. K.: Graphical modeling and
animation of brittle fracture. In SIGGRAPH ’99: Proceedings of
the 26th annual conference on Computer graphics and interactive
techniques (New York, NY, USA, 1999), ACM Press/Addison-
Wesley Publishing Co., pp. 137–146.

[Qui94] QUINLAN S.: Efficient distance computation between non-
convex objects. In In Proceedings of International Conference
on Robotics and Automation (1994), pp. 3324–3329.

[RL06] REDON S., LIN M. C.: A fast method for local penetration depth
computation. Journal of Graphics Tools: JGT 11, 2 (2006), 37–
50.

[RPP∗01] RENZ M., PREUSCHE C., PTKE M., PETER KRIEGEL H.,
HIRZINGER G.: Stable haptic interaction with virtual environ-
ments using an adapted voxmap-pointshell algorithm. In In Proc.
Eurohaptics (2001), pp. 149–154.

[Sch06] SCHUERMANN A.: On packing spheres into containers (about
kepler’s finite sphere packing problem). In Documenta Mathe-
matica (Sept. 09 2006), vol. 11, pp. 393–406.

[TWZ07] TRENKEL S., WELLER R., ZACHMANN G.: A benchmarking
suite for static collision detection algorithms. In International
Conference in Central Europe on Computer Graphics, Visualiza-
tion and Computer Vision (WSCG) (Plzen, Czech Republic, 29
January–1 February 2007), Skala V., (Ed.), Union Agency.

[vdB99] VAN DEN BERGEN G.: A fast and robust GJK implementation
for collision detection of convex objects. Journal of Graphics
Tools: JGT 4, 2 (1999), 7–25.

[vdB01] VAN DEN BERGEN G.: Proximity queries and penetration depth
computation on 3d game objects. In Game developers conference
(2001).

[ZKVM07] ZHANG L., KIM Y. J., VARADHAN G., MANOCHA D.: Gener-
alized penetration depth computation. Computer-Aided Design
39, 8 (2007), 625–638.

