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Abstract
We present novel algorithms for updating bounding volume hierar-
chies of objects undergoing arbitrary deformations. Therefore, we
introduce two new data structures, the kinetic AABB tree and the
kinetic BoxTree.

The event-based approach of the kinetic data structures frame-
work enables us to show that our algorithms are optimal in the
number of updates. Moreover, we show a lower bound for the to-
tal number of BV updates, which is independent of the number of
frames.

We used our kinetic bounding volume hierarchies for collision
detection and performed a comparison with the classical bottom-
up update method. The results show that our algorithms perform
up to ten times faster in practically relevant scenarios.

CR Categories: I.3.5 [Computing Methodologies]: Computa-
tional Geometry and Object Modeling—Geometric algorithms,
Object hierarchies; I.3.7 [Computing Methodologies]: Three-
Dimensional Graphics and Realism—Animation, Virtual reality

1 Introduction
Bounding volume hierarchies (BVHs) for geometric objects are
widely employed in many areas of computer science to acceler-
ate geometric queries. Such acceleration data structures are used
in computer graphics for ray-tracing, occlusion culling and col-
lision detection, to name but a few; They are also used in other
areas such as geographical databases, molecular simulation, or
robotics. Usually, a bounding volume hierarchy is constructed in
a pre-processing step which is suitable as long as the objects are
rigid.

However, deformable objects play an important role, e.g. for
creating virtual environments in medical applications, entertain-
ment, and virtual prototyping [Teschner et al. 2005]. If the object
deforms, the pre-processed hierarchy becomes invalid.

In order to still use this well-known method for deforming ob-
jects as well, it is necessary to update the hierarchies after the de-
formation happens.

Most current techniques do not make use of the temporal and
spatial coherence of simulations and just update the hierarchy by
brute-force at every time step or they simply restrict the kind of
deformation in some way, in order to avoid the time consuming
per-frame update of all bounding volumes (BVs).

On the one hand, we all know that motion in the physical world
is normally continuous. So, if animation is discretized by very fine
time intervals, a brute-force approach to the problem of updating
BVHs would need to do this at each of these points in time. On the
other hand, changes in the combinatorial structure of a BVH only
occur at discrete points in time. Therefore, we propose to utilize
an event-based approach to remedy this unnecessary frequency of
BVH updates.
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According to this observation, we present two algorithms to up-
date hierarchies in a more sensitive way: we only make an update
if it is necessary. In order to determine exactly when it is neces-
sary, we use the framework of kinetic data structures (KDS). To
use this kind of data structures, it is required that a flightplan is
given for every vertex. This flightplan may change during the mo-
tion, maybe by user interaction or physical events (like collisions).
Many deformations caused by simulations satisfy these constraints,
like keyframe animations and many other animation schemes.

Beyond this, our algorithms can handle all objects for which we
can build a bounding volume hierarchy, including polygon soups,
point clouds, and NURBS models. Our algorithms are even flexi-
ble enough for handling insertions or deletions of vertices or edges
in the mesh during run-time.

In the following, we first present a kinetization of a tree of axis
aligned boundingboxes (AABBs) and show that the associated up-
date algorithm is optimal in the number of BV updates (This means
that every AABB hierarchy which performs less updates must be
invalid at some point of time).

Moreover, we prove an asymptotic lower bound on the total
number of update operations in the worst case which holds for ev-
ery BVH updating strategy. This number is independent from the
length of the animation sequence under certain conditions.

In order to reduce the number of update operations, we propose
a kinetization of the BoxTree. A BoxTree is a special case of an
AABB, where we store only two splitting axis per node. On ac-
count of this, we can reduce the overall number of events.

Finally, we present the results of a comparison to the running
times of hierarchical collision detection based on our novel kinetic
BVHs and conventional bottom-up updating, resp.

2 Related Work
Many methods using BVHs have been developed for collision de-
tection of rigid bodies and have been also adopted for deformable
objects, including axis-aligned bounding volumes (AABBs)
[van den Bergen 1997; Provot 1997], k-Dops [Klosowski et al.
1998], OBBs [Gottschalk et al. 1996] and spheres [Palmer and
Grimsdale 1995]. Since the objects deform, the hierarchies must
be updated regularly and the cost of these updates can be high.
[van den Bergen 1997] showed that updating is about ten times
faster compared to a complete rebuild of an AABB hierarchy, and
as long as the topology of the object is conserved, there is no
significant performance loss in the collision check compared to
rebuilding.

Several techniques to speed up the updates during each time step
were proposed, including top-down, bottom-up updates and hybrid
strategies [Bergen 1998]. [Mezger et al. 2003] accelerated the up-
date by omitting the update process for several time steps. There-
fore, the BVs are inflated by a certain distance, and as long as the
enclosed polygon does not move farther than this distance, the BV
need not to be updated. There also exist some stochastic methods
[Klein and Zachmann 2003; Lin 1993] for deformable collision de-
tection, but they can not guarantee to find exact collisions and even
a single missed collision can result in an invalid simulation.

[Knott and Pai 2003] used hardware frame buffer operations to
implement a ray-casting algorithm to detect static interferences be-
tween polyhedral objects. Therefore, the precision is constrained
by the dimension of the viewport. Another hardware-based ap-
proach is given by [Heidelberger et al. 2004]. They use layered
depth images with additional information on face orientation for



the collision detection. Govindaraju et al [Govindaraju et al. 2005]
use chromatic decompositions and the GPU to speed up the trian-
gle tests using 2.5D overlap tests. However, for the broad phase,
they use bottom-up updates of an AABB hierarchy. Furthermore,
the algorithm is restricted to polygonal meshes with fixed connec-
tivity. [Wong and Baciu 2005b] utilize the GPU for the intrinsic
collision test for pairs of polygons. However, for the broad phase
of the collision detection, there are still hierarchies or other tech-
niques needed to reduce the number of candidate pairs.

[Lau et al. 2002] proposed a collision detection framework for
deformable nurbs surfaces using AABB hierarchies. They reduce
the number of updates by looking for special deformation regions.
[Wong and Baciu 2005a] use a partitioning of a deformable sur-
face into so called (π,β, I)-surfaces in order to prune noncolliding
polygon pairs.

Another approach for the special case of morphing objects
[Larsson and Akenine-Moeller 2003], where the objects are
constructed by interpolating between some morphing targets, is to
construct one BVH and fit this to the other morph targets, such that
the corresponding nodes contain exactly the same vertices. During
runtime, the current BVH can be constructed by interpolating the
BVs. [Fisher and Lin 2001] use deformed distance fields for the
collision detection between deformable objects.

[James and Pai 2004] introduced the BD tree which uses spheres
as BVs and leads to a sub-linear-time algorithm for models which
represent the deformation as linear superposition of precomputed
displacement fields. However, the deformation is restricted to re-
duced deformable objects.

There also exist first approaches of collision detection using
the event-based kinetic data structures: [Erickson et al. 1999] de-
scribes a KDS for collision detection between two convex polygons
by using a so-called boomerang hierarchy. [Agarwal et al. 2002]
and [Speckmann 2001] developed a KDS using pseudo triangles
for a decomposition of the common exterior of a set of simple poly-
gons for collision detection. However, all these approaches could
not be extended to 3D-space or are much too expensive in practice.

3 Overview of our Approach
In this section we start with a quick recap of the kinetic data struc-
ture framework and its terminology.

The kinetic data structure framework is a framework for design-
ing and analyzing algorithms for objects (e.g. points, lines, poly-
gons) in motion which was invented by [Basch et al. 1997]. The
KDS framework leads to event-based algorithms that samples the
state of different parts of the system only as often as necessary for
a special task. This task can be for example the computation of the
convex hull of a set of moving points and it is called the attribute
of the KDS.

A KDS consists of a set of elementary conditions, called cer-
tificates, which prove altogether the correctness of the attribute.
Those certificates can fail as a result of the motion of the objects.
This certificate failures, the so-called events, are placed in an event-
queue, ordered according to their earliest failure time. If the at-
tribute changes at the time of an event, the event is called external,
otherwise the event is called internal. Thus sampling of time is not
fixed, but determined by the failure of some certain conditions.

As an example we can assume the bounding box of a set of
moving points in the plane. The bounding box is the attribute we
are interested in. It is generated by four points Pt

{max,min},{x,y}
which have the maximum and minimum x- and y-values at a cer-
tain time point t. For every inner point Pt

i we have Pt
i [x] < Pt

max,x[x],
Pt

i [y] < Pt
max,x[y], Pt

i [x] > Pt
min,x[x] and Pt

i [y] > Pt
min,y[y]. These four

simple inequations are the certificates in our example. If an in-
ner point moves out if the bounding box due to its motion, e.g.
Pt2

i [x] > Pt2
max,x[x], this causes an external event at the point of time

t + ∆t when Pt+∆t
i [x] = Pt+∆t

max,x[x] (see Fig. 1). If Pt
i [x] > Pt

j[x] and
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Figure 1: Assume a set of moving points in the plane.
P{max,min},{x,y} for the current bounding volume of this points. At
some time, P5 will become smaller than Pmin,y, this causes an event.

Pt3
i [x] < Pt3

j [x] for points that are not in Pt
{max,min},{x,y}, this causes

an internal event.
We measure the quality of a KDS by four criteria: A good KDS

is compact, if it requires only little space, it is responsive if we can
update it quickly in case of a certificate failure. It is called local, if
one object is involved in not too many events. This guarantees that
we can adjust changes in the flighplan of the objects quickly. And
finally, a KDS is efficient, if the overhead of internal events with
respect to external events is reasonable.

Algorithm 1: Simulation Loop

while simulation runs do
calc time t of next rendering
e← min events in event-queue
while e.timestamp < t do

processEvent(e)
e← min events in event-queue

check for collisions
render scene

In our case, the objects are a set of m polygons with n vertices.
Every vertex pi has a flightplan fpi(t). This might be a chain of line
segments in case of a keyframe animation or algebraic motions in
case of physically based simulations. The flightplan is assumed to
use O(1) space and the intersection between two flightplans can
be computed in O(1) time. The flightplan of a vertex may change
during simulation by user interaction or physical phenomena, in-
cluding collisions. In this case, we have to update all events the
vertex is involved with.

The attribute is a valid BVH for a set of moving polygons. An
event will happen, when a vertex moves out of its BV.

The kinetic data structures we will present have some properties
in common, which will be described as follows.

Algorithm 2: Check{BV a of object A, BV b object B}

if overlap ( a, b ) then
if a and b are leaves then

test_primitives( a, b )
else

forall children a[i] of a do
forall children b[j] of b do

Check( a[i], b[j] )
else

return

They all use an event-queue for which we use an AVL-Tree, be-
cause with this data structure we can insert and delete events as
well as extract the minimum in time O(logk) where k is the total
number of events.

Both algorithms run within the same framework for kinetic up-
dates, which is explained in Algorithm 1.
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Figure 2: When P1 becomes greater than the current maximum
vertex P2, a Leaf-Event will happen.
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Figure 3: When P1, the maximum of the left child-box becomes
greater than the overall maximum vertex P2, a Tree-Event will hap-
pen.

Furthermore, our algorithms use also the same procedure for the
collision check (see Algorithm 2).

4 Kinetic AABB-Tree
In this section, we present a kinetization of the well known AABB
tree. We build the tree by any algorithm which can be used for
building static BVHs and store for every node of the tree the indices
of these points that determine the bounding box. For our analysis
of the algorithms it is only required that the height of the BVH is
logarithmic in the number of polygons.

After building the hierarchy, we traverse the tree again to find
the initial events.

There are three kinds of different events:
• Leaf-Event: Assume that P1 realizes the BVs maximum along

the x-axis. A leaf event happens, when the x-coord of one of
the other points P2 or P3 becomes greater than P1,x (see Fig. 2).

• Tree-Event: Let K be an inner BV with its children Kl and Kr
and P2 ∈ Kr is the current maximum of K on the x-axis. A
Tree-Event happens when the maximum of Kl becomes greater
than P2 (see Fig. 3). Analogously Tree-Events are generated
for the other axis and the minima. other axis and the minima.

• Flightplan-Update-Event: Every time a flightplan of a point
changes, we get a Flightplan-Update-Event.

So after the initialization we have stored six events with each BV.
In addition, we put the events in the event queue, sorted by time-
stamp.

During runtime, we perform an update according to Algorithm
1 before each collision check. In order to keep the BV hierarchy
valid, we have to handle the events as follows:
• Leaf-Event: Assume in a leaf BV B, realized by the vertices P1,

P2 and P3, the maximum extend along the x-axis has been real-
ized by P2. With the current event, P1 takes over, and becomes
larger than P2[x]. In order to maintain the validity of the BV
hierarchy, in particular, we have to associate P1 as the max x
extent of B. In addition, we have to compute a new event. I.e,
we have to compute all the intersections of the flightplans of
all other vertices in B with P1 in the xt-plane. An event for the
pair with the earliest intersection time is inserted into the event
queue (Fig. 4).

P2

P3

P1

Figure 4: To keep the hierarchy valid when a Leaf-Event happens,
we have to replace the old maximum P2 by the new maximum P1,
and compute the time, when one of the other vertices of the poly-
gon, P2 or P3 will become greater than P1. In this example this will
be P3.

P2

P1

P3

Figure 5: In Addition, we have to propagate the change to upper
BVs in the hierarchy after a Tree-Event happend. After replacing
the P2 old maximum by the new maximum P1 in the lower left box,
we have to compute the event between P1 and P3, which is the
maximum of the father.

But that is not necessarily sufficient for keeping the BVH valid.
In addition, we have to propagate this change in the BVH to
the upper nodes. Assume B be the right son of its father V , so
we have check whether P2 had been the maximum of V too. In
this case, we have to replace P2 by the new maximum P1. In
addition, the corresponding event of V is not valid any more
because it was computed with P2. So we have to delete this
event from the event-queue and compute a new event between
P1 and the maximum of the left son of V .
Similarly we have to proceed up the BVH until we find the first
predecessor V with maxx{V} 6= P2, or until we reach the root.
In the first case we only have to compute another event between
maxx{V} and P1 and stop the recursion. (Fig. 5).

• Tree-Event: Let K be an inner node of the BVH and P2 be
the maximum along the x-axis. Assume further, P2 is also the
maximum of the left son. When a Tree-Event happens, P2 will
be replaced by P1, which is the maximum of the right son of
K (see Fig. 5). In addition, we have to compute a new event
between P1 and P2 and propagate the change to the upper nodes
in the BVH in the same way as described above for the Leaf-
Event.

• Flightplan-Update-Event: When the flightplan of a vertex
changes, we have to update all the timestamps of those events
it is involved in.

For measuring the theoretical performance of our algorithm we
use the four criteria of quality given for every KDS.

In addition, we want to show that our data structure is a valid
BVH even if the object deforms. Therefore, we need the following
definition.
Definition 1 We call a kinetic AABB tree valid, if every node in the
tree is a bounding volume for all polygons in its subtree.
Theorem 1 The kinetic AABB tree is compact, local, responsive
and efficient. Furthermore, if we update the BVHs in the manner
described above, then the tree is valid at every point of time.

We start with the prove of the first part of the theorem.
• Compactness: For a BVH we need O(m) BVs. With every BV

we store at most six Tree- or Leaf-Events. Therefore, we need
space of O(m) overall. Thus, our KDS is compact.
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Figure 6: The flighplans are functions f1 and f2 in the xt-plane and
similarly, in the yt- and zt-planes.

• Responsiveness: We have to show that we can handle certificate
failures quickly.
– Leaf-Events: In the case of a leaf event we have to compute

new events for all points in the polygon, thus the respon-
siveness depends on the number of vertices per polygon. If
this number is bounded we have costs of O(1). When we
propagate the change to upper nodes in the hierarchy, we
have to delete an old event and compute a new one, which
causes costs of O(logm) per inner node for the deletion and
insertion in the event-queue, since the queue contains O(m)
events. In the worst case we have to propagate the changes
until we reach the root. Thus the overall cost is O(log2 m)
for a leaf event.

– Tree-Events: Analogously, for tree events we get costs of
O(log2 m).

Thus the KDS is also responsive.
• Efficiency: The efficiency measures the ratio of the inner to

the outer events. Since we are interested in the validity of the
whole hierarchy, every event is an inner event because every
event changes our attribute. So, the efficiency is automatically
given.

• Locality: The locality measures the number of events one ver-
tex is participating in. For sake of simplicity, we assume that
the degree of every vertex is bounded. Thus, every vertex can
participate in O(logm) events. Therefore, a flightplan update
can cause costs of O(log2 m). Thus, the KDS is local.

The proof of the second part of theorem is too long to be pre-
sented here, so we would like to refer the interested reader to
[Zachmann and Weller 2006]. Note that by this theorem, the BVH
is valid at every time point, not only at the moments we check for
a collision as it is the case with most other update algorithms like
bottom-up or top-down approaches.

5 Optimality of the kinetic AABB-Tree
In the previous section we have proven that our kinetic AABB can
be updated efficiently. Since there are no internal events, we would
also like to determine the overall number of events for a whole
animation sequence, in order to estimate the running time of the
algorithm more precisely.
Theorem 2 Given n vertices Pi, we assume that each pair of flight-
plans, fPi(t) and fPj (t), intersect at most s times. Then, the total
number of events is in nearly O(n logn).

An exact and complete proof is too lengthy to be presented here
but it can be summarized as follows. We consider all flightplans
along each coordinate axis separately (see Fig. 6).

We reduce the estimation of the number of events on the com-
putation of the upper envelope of a number of curves in the plane.
This computation can be done by an algorithm using a combina-
tion of divide-and-conquer and sweep-line. During the merge step,
a line is swept from one curve intersection to the next. Each inter-
section corresponds to an update in our kinetic BVH.

� ��

P1

Le f t

P2

Right
minBmaxB

Figure 7: If a vertex in the left subtree becomes greater than the
maximum P2, a Tree-Event will happen.

It can be shown that the maximal number of curve intersections
is in O(λs(n) logn), where λs(n) is the length of a Davenport-
Schintzel sequence. For given s, λs(n) behaves nearly linear; more
precisely λs(n) ∈ O(n log∗ n) where log∗ n is the smallest number
m for which the m-th iteration of the logarithm is smaller than 1.
For example, log∗ n ≤ 5 for all n ≤ 1020000 [Agarwal and Sharir.
1995].

Furthermore, it can be shown that the problem of computing the
upper envelope is in Θ(n logn), which shows that our algorithm is
optimal in the worst case.

For a detailed proof we refer the interested reader to [Zachmann
and Weller 2006],

This demonstrates one of the strengths of the kinetic AABB tree:
with classical update strategies like bottom-up, we need O(kn) up-
dates, where k is the number of frames. However, with our ki-
netic BVH, we can reduce this to nearly O(n logn) updates in the
worst case. Furthermore, it is totally independent of the number of
frames the animation sequence consists of (or, the frame rate), pro-
vided the number of intersections of the flightplans depends only
on the length of the sequence in "wall clock time" and not on the
number of frames.

Moreover, our kinetic AABB tree is updated only if the vertices
that realize the BVs change; if all BVs in the BVH are still real-
ized by the same vertices after a deformation step, nothing is done.
As an extreme example, consider a translation or a scaling of all
vertices. A brute-force update would need to update all BVs — in
our kinetic algorithm, nothing needs to be done, since no events
occur. Conversely, the kinetic algorithm never performs more up-
dates than the brute-force update, even if only a small number of
vertices has moved.

6 Kinetic Boxtree
The kinetic AABB tree needs up to six events for every BV. In or-
der to reduce the total number of events, we kinetized another kind
of BVH, the BoxTree [Zachmann 1995], which uses less memory
than the kinetic AABB tree. The main idea of a BoxTree is to store
only two splitting planes per node instead of six values for the ex-
tends of the box. To turn this into a KDS we proceed as follows:

In the pre-processing step, we build a BoxTree as proposed
in [Zachmann 1995], but similarly to the kinetization of the AABB
tree, we do not store real values for the splitting planes. Instead,
we store that vertex for each plane that realizes it (see Fig. 7). We
continue with the initialization of the events:

There are only two kinds of events:
• Tree-Event: Assume B is an inner node of the hierarchy with

splitting plane e ∈ {x,y,z} and assume further minB is the min-
imum of the right subtree (or maxB the maximum of the left
subtree). A Tree-Event happens, when a vertex of the right
subtree becomes smaller than minB with regard to the splitting
axis e, or a vertex of the left subtree becomes greater than maxB
(see Fig. 7).

• Flightplan-Update-Event: Every time if the flightplan of a ver-
tex changes, a Flightplan-Update-Event happens.
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Figure 8: In order to compute a new event, we have to look which
vertex can become greater than maxl . In the first level, this could
be the maximum of the left subtree, the vertex 5, and all vertices in
the right subtree of (1,2,3,4,5,6). On the next level it could be the
maximum of the left subtree of (3,4,6), thus the vertex 4, and all
vertices in the left subtree.

During runtime, we perform an update according to Algorithm 1
before every collision check. For keeping the BVH valid, we have
to handle the events as described in the following:
Tree-Event: Let K be the node, where the Tree-Event happens and
let Pnew be the vertex in the left subtree of K that becomes greater
than the current maximum Kmax.

In this case we have to replace Kmax by Pnew and compute a new
event for this node. The computation of a new event is more com-
plicated than in the case of a kinetic AABB tree. This is because
the number of possibilities of different splitting planes and because
of the fact that the extends of the BVs are given implicitly.

For simplicity, we first assume that all BVs have the same split-
ting axis. In this case, we have to look for event candidates, ver-
tices, which can become greater than the maximum, in a depth-first
search manner (see Fig. 8). Note that we do not have to look in the
left subtree of the left subtree, because those vertices would gener-
ate an earlier event stored with one of the nodes in the subtree.

If more than one splitting axis is allowed, we first have to search
for the nodes, with the same splitting axis (see Fig. 9).

Then we have to propagate the change to the upper nodes: First
we have to search a node above K in the hierarchy with the same
splitting axis. If its maximum is also Kmax, we have to replace
it and compute a new event for this node. We have to continue
recursively until we reach a node O with the same splitting axis but
Omax 6= Kmax, or until we reach the root.
Flightplan-Update-Event: If the flightplan of a point changes,
we have to update all events it is involved in. Therefore, we once
again start at the leaves and propagate it to the upper nodes.

In order to show the performance of the algorithm, we have to
show the four quality criteria for KDS again.
Theorem 3 The kinetic BoxTree is compact, local and efficient.
The responsiveness holds only in the one-dimensional case. Fur-
thermore, if we use the strategies described above to update the
BVH, we get a valid BVH at every point of time.

In the following we show, due to its length, only the first part
of the proof, but the interested reader can find the second part in
[Zachmann and Weller 2006].

splity

splitx
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Figure 9: If more than one splitting axis are allowed, we have to
search for the next level with the same splitting axis, when we want
to look for the next candidates for an event. We have to visit the red
marked nodes when we compute a new event for the root box.
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Figure 10: In the worst case, all levels have the same split axis,
instead of the root. If we now want to compute a new event for the
root, we have to traverse the whole tree.

• Compactness: We need space of O(m) for storing the kinetic
BoxTree. In addition, we get at most two events per node, so we
have O(m) events overall, so, the kinetic BoxTree is compact.

• Efficiency: Since we are interested in the validity of the whole
hierarchy and every event leads to a real change of the combi-
natorial structure of the hierarchy, our KDS is also efficient.

• Locality: Assuming the tree is not degenerated, one polygon
can be involved in at most O(logm) events, thus the KDS is
local.

• Responsiveness: Not so clear is the responsiveness of our KDS,
which is due to the costly computation of new events, where we
have to go down the tree in dfs-manner.
If all nodes have the same splitting axis, the computation of a
new event costs at most O(logm), because of the length of a
path from the root to a leaf in the worst case.
Deletion and insertion of an event in the event-queue generate
costs of O(logm) and in the worst case we have to propagate
the change up to the root BV.
Therefore, the overall cost for computing an event is
O(m log2 m) and thus the KDS is responsive in the one-
dimensional case.
But if the other nodes are allowed to use other split-axis too, it
could be much more expensive. Assume that the root BV has
the x-axis as split-axis and all other nodes have y as split-axis
(Fig. 10). If an event appears at the root, we have to traverse
the whole tree to compute the next event, so we have total costs
of O(m logm) and thus, the KDS is not responsive.

The total number of events is nearly in O(n logn) which follows
analogously to the kinetic AABB tree. Therefore, we have a sec-
ond KDS for fast updating a BVH which uses less events than the
kinetic AABB tree but the computation of one single event is more
complicated.

7 Results
We implemented our algorithms in C++ and tested the performance
on a PC running Linux with a 3.0 GHz Pentium IV with 1 GB
of main memory. We used two different types of test scenarios,
keyframe animations and simple velocity fields.

There are three scenes with keyframe animations, the first one
shows a tablecloth falling on a table. We tested this scene with
several resolutions of the cloth, ranging from 2k to 16k faces. This



scene shows the behaviour of our algorithms under heavy deforma-
tion. The two other keyframe scenarios show typical cloth anima-
tions. The first one shows a male avatar with a shirt in resolutions
from 32k to 326k deforming triangles (Fig. 11), the other one a
female avatar with a dress reaching from 65k to 580k deforming
triangles (see Fig. 12).

For measuring the speed of updates when the flightplan changes,
we used a benchmark with two spheres. Every point of a sphere is
given a velocity vector which points away from the midpoint, so
that the spheres expand regularly. When they collide, the velocity
vectors of the colliding triangles are reversed. We tested this scene
with resolutions from 2k to 40k triangles.

We compared the performance of our algorithms with a bottom-
up updating strategy. Because we are primary interested in the
speed of the updates, we do not use self-collision detection.

First, we consider the number of events. In the high-resolution
tablecloth scene, we have about 400 events per frame and have
to update only 1000 values for the kinetic AABB tree, and even
less for the kinetic BoxTree (Fig. 13). In contrast, the bottom-up
approach has to update 60 000 values. Since the computation costs
for an event are relatively high, this results in an overall speed-up
of about factor 5 for updating the kinetic AABB tree. The number
of events rises nearly linearly with the number of polygons, which
supports our lower bound for the total number of events of nearly
O(n logn) (see Fig. 13).

The figure also shows that we need less events for the kinetic
BoxTrees, but the the proper collision check takes more time since
the kinetic BoxTree is susceptible for deformations.

A high amount of flightplan updates does not affect performance
of the data structures, they are still up to 5 times faster than the
bottom-up updates (see Fig. 15).

In the cloth animation scenes, the gain of the kinetic data struc-
tures is highest, because the objects undergo less deformation than
the tablecloth, and thus we have to perform less events. In this
scenarios we see a performance gain of a factor about 10 (Fig. 14
and 15). From Theorem 2, it is clear that this factor increases with
the number of interpolated frames between two keyframes. This
is, because the performance of the event based kinetic data struc-
tures only depends on the number of keyframes and not on the total
length of the scene.

Overall, the kinetic AABB performs best, and the running time
of the updating operations is independent from the sampling fre-
quency. This means, for example, if we want to render a scene in
slow motion, maybe ten times slower, the costs for updating are
still the same, while they increase for the bottom-up-update by a
factor of ten.

8 Conclusions and Future Work
We introduced two novel data structures and algorithms for updat-
ing a BVH over deformable objects fast and efficient. We presented
a theoretical and experimental analysis showing that our new al-
gorithms are fast and efficient both theoretically and in practice.
We used the kinetic data structure framework to analyze our algo-
rithms, and we showed an upper bound of nearly O(n logn) for the
updates that are required at most to keep a BVH valid. We also
showed that the kinetic AABB tree and kinetic BoxTree are opti-
mal in the sense that they only need to make O(n logn) updates.

Our kinetic data structures update bounding volumes more than
10 times faster than a bottom-up approach in practically relevant
cloth animation scenes. Even in scenarios with heavy deformations
of the objects or many flightplan updates we have a significant gain
by our algorithms.

We believe that the kinetic data structures are a fruitful starting
point for future work on collision detection for deformable objects.
We will try to improve the performance by using trees of higher
order than binary trees.

The BoxTree uses less events, but is susceptible to deformations.
So it could be a good strategy to rebuild parts of a BoxTree if the
deformation is too strong. This could also speed up the algorithm.

Furthermore, we showed that our data structures are valid at ev-
ery time point of simulation. So, they are optimally qualified for
continuous collision detection algorithms. Actually, we are work-
ing on event-based approach for continuous collision detection of
deformable objects, which makes use of the kinetic AABB tree.

Finally we plan to use our algorithms in other kinds of motion,
including physically based simulations and other animation
schemes and other applications like ray-tracing or occlusion
culling.
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Figure 11: The scenes, with which we tested our algorithm: Two expanding spheres, a tablecloth falling down, and a cloth animation scene.

Figure 12: The second cloth animation scene shows a walking female avatar with a dress
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Figure 13: The left diagram shows the average number of events and updates per frame. The kinetic BoxTree has, as expected, the smallest
total number of events and the smallest number of total updates per event. The diagram in the middle shows that the total number of updates
is significantly lower than the updates needed by the bottom-up-strategy. Unfortunately, due to the relatively high deformation of the tablecloth
and the high costs for the event-computation, the gain is lesser than expected, but there is still a significant gain for the kinetic AABB tree and
the BoxTree (right diagram).
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Figure 14: The left diagram shows the average total time for the updates and the collision checks, for the sphere scenes. This scene seems
to be more appropriate for the KDSs than the tablecloth scene, despite the high amount of flightplan updates. The gain of the kinetic data
structures compared to the bottom-up approach is more than a factor of five. The diagram in the middle shows the average number of events
and updates for the cloth animation with the women. The ratio seems to be nearly the same as in the tablecloth scene. The diagram on the
right shows the update times in the same animation scene. In this scene we have an overall gain of a factor about 10 for the kinetic AABB
compared to the bottom-up-update.
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Figure 15: The left diagram shows the average update time for the cloth animation scene with the man, depending on the number of interpolated
frames between two key frames. Since the number of events only depends on the number of key frames and not on the number of interpolated
frames, so, the average update time decreases if we increase the total number of frames. The diagram in the middle shows the average update
time for the cloth animation scene with the man and shows total time for this scene. In this scene we have an overall gain of a factor about
10 for the kinetic AABB compared to the bottom-up-update. The right diagram shows the total time, this means the time for updates and the
proper check time.
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